АНАЛИТИКА ПЛЮС
Профессиональные услуги в сфере BI

Анализ данных: статистические методы исследования

После получения и сбора информации проводится анализ статистических данных. Считается, что этап обработки информации – самый важный. Действительно, это так: именно на этапе обработки статистических данных выявляют закономерности и делают выводы и прогнозы. Но не менее важным является этап сборки информации, этап получения отчета и данных.

Еще до начала исследования необходимо определиться с типами переменных, которые бывают качественные и количественные. Также переменные разделяются по типу шкалы измерений:

  • она может быть номинальной – является лишь условным обозначением для описания объектов или явлений. Номинальная шкала может быть только качественной.
  • при ординальной шкале измерений данные могут выстраиваться по возрастанию или убыванию, но определить количественные показатели этой шкалы невозможно.
  • И есть 2 шкалы чисто количественного типа:
    — интервальная
    — и рациональная.

Интервальная шкала указывает, насколько тот или иной показатель больше или меньше в сравнении с другим и дает возможность подобрать похожие по свойствам соотношения показателей. Но при этом она не может указать, во сколько раз тот или иной показатель больше или меньше другого, так как у нее нет единой точки отсчета.

А вот в рациональной шкале такая точка отсчета есть. При этом в рациональной шкале содержатся только положительные значения.

Статистические методы исследования

После определения переменной можно переходить к сбору и анализу данных. Условно можно выделить описательный этап анализа и собственно аналитический. Описательный этап включает представление собранных данных в удобном графическом виде – это графики, диаграммы, дашборды.

Для самого анализа данных используют статистические метода исследования. Выше мы подробно останавливались на типах переменных – различия в переменных важны для при выборе статистического метода исследования, так какждый из них требует свой тип переменных.
Статистический метод исследования – это метод исследования количественной стороны данных, объектов или явлений. На сегодня выделяют несколько методов:

  1. Статистическое наблюдение – это систематический сбор данных. Перед наблюдением необходимо определить те характеристики, которые будут исследоваться.
  2. После наблюдения данные можно обработать при помощи сводки, которая анализирует и описывает отдельные факты как часть общей совокупности. Или при помощи группировки, во время которой все данные разделяются по группам на основании каких-либо признаков.
  3. Можно определить абсолютную и относительную статистическую величины – можно сказать, что это первая форма представления статистических данных. Абсолютная величина придает данным количественные характеристики в индивидуальном порядке, в независимости от других данных. А относительные величины, как ясно из названия, описывают одни объекты или признаки относительно других.При этом на значение величин могут влиять различные факторы. В этом случае необходимо выяснить вариационный ряд этих величин (например, максимальное и минимальное значение при определенных условиях) и указать причины, от которых они зависят.
  4. На каком-то этапе бизнес-анализа данных становится слишком много и в этом случае можно применить метод выборки – использовать при анализе не все данные, а только их часть, отобранную по определенным правилам. Выборка может быть:
    • случайной,
    • стратифицированной (которая учитывает, например, процентное соотношение групп, находящихся внутри объема данных для исследования),
    • кластерной (когда сложно получить полное описание всех групп, входящих в исследуемые данные, для анализа берут только несколько групп)
    • и квотная (похожа на стратифицированную, но соотношение групп не равно изначально имеющемуся).
  5. Метод корреляционного и регрессионного анализа помогает выявить взаимосвязи данных и причины, по которым данные зависят друг от друга, определить силу этой зависимости.
  6. И наконец, метод динамических рядов позволяет отследить силу, интенсивность и частоту изменений объектов и явлений. Он позволяет оценить данные во времени и дает возможность прогнозирования явлений.

Конечно, для качественного статистического исследования необходимо обладать знаниями математической статистики. Крупные компании давно осознали пользу такого анализа – это же практически возможность не только понять почему компании так развивалась в прошлом, но и узнать, что ее ждет в будущем: например, зная пики продаж, можно правильно организовать закупку товаров, их хранение и логистику, скорректировать количество персонала и их рабочие графики.

Сегодня все этапы статистического анализа могут и должны выполнять машины – и на рынке уже есть решения для автоматизации бизнес-аналитики. В этом случае «человеку» уже не обязательно знать статистику или хотя бы ее основы.

Решения для автоматизации анализа хранилища данных сокращают затраты времени и затраты на найм специалистов в этой области. Сегодня есть решения, доступные даже небольшим компаниям (такие как Tableau). И у них множество преимуществ по сравнению с «человеческим» анализом:

— не нужны специальные знания в области IT или статистики
— легкость и быстрота внедрения
— невысокая стоимость внедрения (от 2000 рублей в месяц – на февраль 2018 года)

  • Узнать больше о Tableau можно в разделе Обучение — прочитайте нашу Базу знаний.
  • Или просто напишите нам — и мы проведем вам презентацию и расскажем о продукте подробнее.
  • Еще можно изучить Tableau самостоятельно — скачайте бесплатную версию и получите обучающие материалы:
Скачайте Tableau бесплатно
и получите обучающие материалы
x

Этот сайт использует файлы cookies, чтобы облегчить вам пользование нашим веб-сайтом.

Продолжая использовать этот веб-сайт, вы даете согласие на использование файлов cookies.