АНАЛИТИКА ПЛЮС
Профессиональные услуги в сфере BI

Анализ для маркетинга: CAC, LTV и сегментация — отслеживаем правильные метрики

Маркетологи постоянно стремятся увеличить эффективность своих маркетинговых кампаний, особенно затрат на маркетинг. Ежегодно и регулярно они стараются получить больше лидов, заявок, звонков или подписчиков за 1 потраченный рубль.

Неправильные показатели

Несмотря на это, большинство менеджеров по маркетингу тратят свое время на исследование неверных показателей. Они пользуются встроенной в аналитический продукт статистикой, а такие предложения обычно включают самый простой анализ:

  • стоимость за клик (CPC),
  • стоимость за тысячу показов (CPM)
  • и стоимость за действие (CPA).

Маркетинговый отдел исследует, как меняются эти показатели в зависимости от недели или месяца, в зависимости от кампании, группы объявлений, аудитории и т. д.

Более продвинутые копают глубже и анализируют стоимость заказа или среднюю цену продажи (ASP) – и снова сравнивают эти показатели по кампаниям, группам объявлений и пр. В этом случае можно даже узнать стоимость привлечения нового клиента (САС) и сравнить с жизненным циклом  пользователя (LTV). Этот анализ достаточно интересен и полезен: вы узнаете, сколько вы потратили на привлечение клиента в целом, а также сравните с тем, сколько этот клиент может принести прибыли. Но – есть проблема: группируя всех клиентов вместе, вы не используете сегментацию клиентов, которая скрывает в себе огромные возможности для роста бизнеса.

Какие же показатели правильные?

Мы рекомендуем при анализе любого уровня использовать сегментацию. Например, сравнивая CAC с LTV и при этом сегментируя пользователей, можно определить, какие клиентские сегменты для вас являются наиболее прибыльными. А значит – сфокусироваться в рекламе именно на этих сегментах! При анализе с сегментацией вы легко идентифицируете высокоэффективные кампании и каналы и легко определите убыточные (которые тратят средства впустую, без результата в виде нового пользователя).

Для начала — считаем LTV

Рассчитываем фактическое LTV на основе прогнозируемых расходов для каждого сегмента клиентов. Потом смотрим, сколько сегмент потратил в первый год и учитываем прогнозируемый отток из этого сегмента. Сравниваем расходы на сегмент и доход от него же.  Даже если у вас нетрадиционный онлайн-бизнес и вы считаете свой бизнес сложным, вы сможете использовать этот метод для расчета прогнозируемого LTV ваших клиентских сегментов.

Сегментируйте!

Вначале учитывайте CAC и LTV для стандартных сегментов, таких как

  • источник (кампания, аудитория, группа объявлений и т. д..),
  • аудитория (возраст, пол, geo, etc.),
  • платформа (OS, браузер, etc.)
  • и поведение (использование различных опций, данные, предоставленные во время регистрации и настройки).

Затем изучите различные комбинации сегментов. Начните с гипотез о сегментах, которые могут работать, а могут и не работать 🙂 А затем исследуйте: работает ли этот канал или нет.

Примеры глубокой сегментации:

  • CAC в сравнении с LTV для пользователей, которые видели кампанию Facebook на устройстве Android и завершили процесс пробной регистрации
  • CAC и LTV для женщин из Канады, которые видели объявление на YouTube через Chrome

Изучение ROI по сегментам с помощью Tableau

Почему не все знают о таком сегментированном анализе?

Если вашими рекламными кампаниями управляет агентство, то у него есть доступ только к рекламным платформам. А для построения такого сегментированного анализа нужны данные из CRM  и внутренних биллинговых систем.

В идеале необходимо настроить такой анализ на своей стороне – внутри компании. Вычисление LTV требует отслеживания клиентов в течение довольно длительного периода времени. В этом должны помочь «пиксели» рекламной платформы, но файлы cookie могут стираться, а клиенты любят переключаться между устройствами… Что делает процесс сборки информации об LTV практически невозможным. Но!

Tableau – нам в помощь

Можно использовать Tableau для «склеивания» и интегрирования необходимых для анализа систем.

Ниже – опыт компании TeamSnap по созданию аналитического дашборда с сегментацией в Tableau:

  1. Вытаскиваем данные из Google Analytics в BigQuery Google: это нужно для анализа данных атрибуции прямого клика (например, данные о пользователях, которые кликают на объявление, а затем конвертируются).
  2. Также к BigQuery привязываем данные о тех клиентах, кто просматривает объявление, никогда не нажимает, но в конечном итоге через другой источник конвертируются – обычно через брендовый поиск.
  3. Извлекаем данные о стоимости из AdWords в BigQuery. Эта передача данных осуществляются через Службу передачи данных Google.
  4. Запускаем коннектор BigQuery в Tableau, чтобы вытащить все данные в Tableau для аналитики и совместной работы.
  5. Используем коннектор Salesforce в Tableau для извлечения данных из Salesforce.
  6. Выгружаем данные из наших фоновых биллинговых и операционных систем с использованием коннектора SQL в Tableau.
  7. Все данные связываются между собой в Tableau.

И вот теперь – самое интересное! Используем платформу визуальной аналитики Tableau для создания дашбордов, которые помогают легко, быстро и наглядно мониторить и отслеживать нужные данные.

Отчеты и фильтры

Отчеты ежедневно автоматически  отправляются менеджерам (через функцию подписки Tableau).

В отчете мы настроили множество фильтров – работать с ними просто, специализированных знаний не нужно. Несмотря на внешнюю простоту и легкость использования, фильтры используют довольно сложные структуры данных, охватывающие несколько систем.

Такой глубокий анализ по сегментам помог компании TeamSnap в первый же день применения анализа сэкономить до 300 тыс. долл.! На таком дашборде (несколько графиков на одном листе) сразу видно, какая кампания прибыльна, а какая убыточна. За несколько минут можно уточнить подробности (кликнуть по интересующей кампании и углубиться на уровень ниже) и принять правильное решение.

О том, как мы помогаем компаниям и предприятиям анализировать данные, читайте в нашем Блоге, раздел Практика.

  • Анализируйте ваши данные быстро, легко и красиво!
    Если у вас появились вопросы, напишите или позвоните нам. Мы любим отвечать на вопросы и знаем все про анализ данных:
    напишите нам
    — позвоните нам +7 499 391-2984

Источник: tableau.com

Наша необычная коллекция обоев для рабочего стола!
Выбирай картинку и скачивай абсолютно бесплатно>>

x

Этот сайт использует файлы cookies, чтобы облегчить вам пользование нашим веб-сайтом.

Продолжая использовать этот веб-сайт, вы даете согласие на использование файлов cookies.