АНАЛИТИКА ПЛЮС
Профессиональные услуги в сфере BI

Big Data. Анализ больших данных

Под термином Big Data обычно имеют в виду любое количество структурированных, полуструктурированных и неструктурированных данных. Впрочем вторые и третьи могут и должны быть упорядочены для последующего анализа информации. Большие данные не приравниваются к какому-либо фактически объему, но говоря о Big Data в большинстве случаев имеются в виду терабайты, петабайты и даже экстрабайты информации. Такой объем данных может скопиться у любого бизнеса со временем, или, в случаях когда компании необходимо получать много информации, в режиме реального времени.

Анализ больших объемов данных

Говоря об анализе Big Data, в первую очередь имеется в виду сбор и хранение информации из разных источников. Например, данные о клиентах совершивших покупки, их характеристики, информация о запущенных рекламных компаниях и оценка ее эффективности, данные контактного центра. Да, всю эту информацию, можно сопоставить и анализировать. Можно и нужно. Но для этого нужно настроить систему, позволяющую собирать и преобразовывать данные, не искажая информацию, хранить ее и, наконец, визуализировать. Согласитесь, при анализе больших данных таблицы, распечатанные на нескольких тысячах страниц, мало чем помогут для принятия бизнес-решений.

1. Поступление больших данных

В большинстве сервисов, собирающих информацию о действиях пользователей, есть возможность экспорта хранилище данных. Чтобы они поступали в компанию в структурированном виде используются различные инструменты, например, Alteryx. Это ПО позволяет получать в автоматическом режиме информацию, обрабатывать ее, но самое главное — преобразовывать в нужный вид и формат не искажая.

2. Хранение и обработка больших данных

Почти всегда при сборе больших массивов информации встает проблема ее хранения. Из всех платформ, которые мы изучали, наша компания отдает предпочтение Vertica. В отличии от других продуктов, Vertica способна быстро «отдавать» сохраненную в ней информацию. К недостаткам можно отнести долгую запись, но во время анализа больших данных — на первый план выходит скорость отдачи. Например, если мы говорим о составлении отчетности отделов, использующего петабайт информации, скорость отдачи — одна из важнейших характеристик.

3. Визуализация Big Data

И наконец, третий этап анализа больших объемов данных — визуализация. Для этого необходима платформа, которая способна наглядно отразить всю поступившую информацию в удобном для бизнес-аналитика виде. На наш взгляд, справится с задачей может всего один софтверный продукт — Tableau. Безусловно, одно из лучших на сегодняшних дней решение, которое способно показать визуально любую информацию, превращая работу компании в трехмерную модель, собирая действия всех подразделений в единую взаимозависимую цепь (больше о возможностях Tableau вы можете прочесть в нашей Базе Знаний).

Вместо итога отметим, что формировать собственные Big Data сейчас может почти любая компания. Анализ больших данных перестает быть сложным и дорогим процессом. От руководства компании теперь требуется правильно формулировать вопросы к собранной информации, в то время как невидимых серых зон практически не остается.

Скачайте Tableau бесплатно
и получите обучающие материалы
x

Этот сайт использует файлы cookies, чтобы облегчить вам пользование нашим веб-сайтом.

Продолжая использовать этот веб-сайт, вы даете согласие на использование файлов cookies.